LA PHOTOSYNTHESE

LA PHOTOSYNTHESE

La photosynthèse (du grec φς phōs « lumière » et σύνθεσις sýnthesis « combinaison ») est le processus bioénergétique qui permet aux plantes, aux algues et à certaines bactéries, dites photoautotrophes, de synthétiser de la matière organique en utilisant la lumière du soleil1. Des glucides, par exemple des oses tels que le glucose, sont synthétisés à partir du dioxyde de carbone CO2 et de l'eau H2O avec libération d'oxygène O2 comme sous-produit de l'oxydation de l'eau. C'est la photosynthèse qui maintient constant le taux d'oxygène dans l'atmosphère terrestre et fournit toute la matière organique ainsi que l'essentiel de l'énergie utilisées par la vie sur Terre2.

Tous les organismes photosynthétiques ne réalisent pas la photosynthèse de la même façon, mais ce processus commence toujours par l'absorption de l'énergie lumineuse par des protéines appelées centres réactionnels qui contiennent des pigments photosynthétiques appelés chlorophylles. Chez les plantes, ces protéines se trouvent dans la membrane des thylakoïdes, des structures incluses dans les chloroplastes, présents essentiellement dans les feuilles, tandis que chez les bactéries elles sont incluses dans la membrane plasmique. Au cours de ces réactions dépendantes de la lumière, une partie de l'énergie lumineuse sert à exciter des électrons d'une substance donneuse, le plus souvent de l'eau, électrons qui servent à leur tour à produire du nicotinamide adénine dinucléotide phosphate réduit (NADPH) ainsi que de l'adénosine triphosphate(ATP).

Chez les plantes, les algues et les cyanobactéries, les glucides sont produits par une série de réactions indépendantes de la lumière appelées cycle de Calvin, mais certaines bactéries utilisent d'autres voies métaboliques pour réaliser la fixation du carbone, comme le cycle de Krebs inverse. Dans le cycle de Calvin, le CO2 atmosphérique est fixé sur des composés organiques tels que le ribulose-1,5-bisphosphate. Les composés formés sont ensuite réduits et convertis par exemple englucose à l'aide du NADPH et de l'ATP formés à la suite des réactions dépendantes de la lumière. La photosynthèse est ainsi la principale voie de transformation du carbone minéral en carbone organique. En tout, les organismes photosynthétiques assimilent chaque année entre 100 et 115 milliards de tonnes de carbone en biomasse3,4.

Les premiers organismes photosynthétiques sont probablement apparus très tôt au cours de l'évolution et devaient sans doute utiliser des réducteurs tels que l'hydrogène H2 et le sulfure d'hydrogène H2S au lieu de l'eau5. Les cyanobactéries sont apparues plus tard, et l'excès d'oxygène alors libéré dans l'environnement aurait contribué à la « Grande Oxydation » il y a environ 2,4 milliards d'années6, rendant possible l'évolution des êtres vivants vers des formes de vie plus complexes. Aujourd'hui, la puissance moyenne captée par la photosynthèse à l'échelle du globe avoisine 130 térawatts7,8,9, ce qui équivaut à environ six fois la consommation énergétique de l'humanité10.

 

VUE GENERALE

PRINCIPE

Les organismes photosynthétiques sont photoautotrophes, ce qui signifie qu'ils sont capables de synthétiser leurs biomolécules directement à partir de composés minéraux — le plus souvent le dioxyde de carbone CO2 et l'eau H2O — à l'aide de l'énergie lumineuse reçue du soleil. Cependant, tous les organismes capables d'utiliser l'énergie lumineuse pour leur métabolisme ne sont pas nécessairement photosynthétiques : les organismes dits photohétérotrophes synthétisent leurs biomolécules à partir de composés organiques, et non pas de CO2, comme sources de carbone2.

Chez les plantes, les algues et les cyanobactéries, la photosynthèse libère de l'oxygène O2. C'est ce qu'on appelle la photosynthèse oxygénique. Bien qu'il y ait des différences dans la biosynthèse réalisée par ces organismes, les mécanismes généraux restent tout à fait semblables d'une espèce à l'autre. Il existe cependant des bactéries qui possèdent une photosynthèse anoxygénique, laquelle consomme du CO2 mais ne libère pas d'O2.

Le dioxyde de carbone est converti en glucides à travers un processus appelé fixation du carbone. Il s'agit de réactions d'oxydoréduction endothermiques, de sorte que ce processus a besoin d'une part d'électrons pour réduire le CO2 en sucres et d'autre part d'énergie pour rendre ces réactions thermodynamiquement favorables. La photosynthèse est globalement la réciproque de la respiration cellulaire, au cours de laquelle des composés organiques tels que le glucose sont oxydés en dioxyde de carbone et en eau afin de libérer de l'énergie et de produire des coenzymes réductrices. Cependant, ces deux processus impliquent des réactions chimiques différentes réalisées dans des compartiments cellulaires différents.

La photosynthèse se déroule en deux phases : lors de la première, les réactions dépendantes de la lumière captent l'énergie lumineuse et l'utilisent pour produire une coenzyme réductrice, le NADPH, et une coenzyme qui stocke l'énergie chimique, l'ATP, tandis que, lors de la seconde phase, les réactions indépendantes de la lumière utilisent ces coenzymes pour absorber et réduire le dioxyde de carbone.

La plupart des organismes photosynthétiques oxygéniques utilisent la lumière visible, cependant ils sont actifs qu'à certaines longueurs d'ondes (c'est à dire qu'ils absorbent ces longueurs d'ondes par leurs pigments photosynthétiques) pour la chlorophylle a, le spectre d'action comprend les bleus et les rouges (longueurs d'ondes autour 440 et de 680nm), d'autres pigments absorbant d'autres longueurs d'ondes comme la chlorophylle b, les xanthophylles, ou encore les carotènoïdes, jouent un rôle dans la photosynthèse, aussi certains organismes photosynthétiques utilisent le proche infrarouge ou, plus particulièrement, le rouge lointain11(autour de 800 nm de longueur d'onde).

On relèvera enfin que, si la photosynthèse est un processus biologique spécifique aux plantes, aux algues et à certains microorganismes (dont des protistes et des bactéries), il existe également un animal connu pour être le siège d'un processus de photosynthèse se déroulant dans des chloroplastes qu'il ne produit pas lui-même mais qu'il absorbe avec les algues dont il se nourrit.

 

DONNEURS D’ELECTRONS

L'équation globale de la photosynthèse peut s'écrire :

2n CO2 + 2n AH2 + photons → 2(CH2O)n + 2n AO, où A représente un donneur d'électrons.

Dans la photosynthèse oxygénique, l'eau est le donneur d'électrons, dont la dissociation libère de l'oxygène tandis que de l'eau est reformée à partir d'un atome d'oxygène du dioxyde de carbone :

2n CO2 + 4n H2O + photons → 2(CH2O)n + 2n O2 + 2n H2O.

On simplifie généralement l'équation en éliminant 2n H2O dans les deux termes, ce qui donne :

2n CO2 + 2n H2O + photons → 2(CH2O)n + 2n O2.

La photosynthèse anoxygénique utilise d'autres composés que l'eau comme donneur d'électrons. Ainsi, les bactéries pourpres sulfureuses utilisent le sulfure d'hydrogène H2S :

2n CO2 + 4n H2S + photons → 2(CH2O)n + 4n S + 2n H2O.

Les bactéries sulfureuses vertes sont par exemple capables d'utiliser le sulfure d'hydrogène H2S, le thiosulfate S2O32– et le soufre élémentaire S0 comme donneurs d'électrons, tandis que les bactéries vertes non sulfureuses peuvent utiliser l'hydrogène H2. Certains microorganismes sont capables d'utiliser l'arsénite AsO33–pour réduire le dioxyde de carbone CO2 en monoxyde de carbone CO avec formation d'arséniate AsO43–, ce qui peut être représenté par l'équation suivante12,13 :

CO2 + (AsO33–) + photons → (AsO43–) + CO.

Parmi les donneurs d'électrons rencontrés chez les organismes photosynthétiques, on peut encore relever le fer ferreux Fe2+, les ions nitrite NO2, voire des composés organiques tels que des acides et des alcools simples, par exemple l'acide acétique CH3COOH et l'éthanol CH3CH2OH.

 

ORGANIQUES ET MEMBRANES DE LA PHOTOSYNTHYNSES

CHLOROPLASTES ET THYLAKOÏDES.

Chez les bactéries photosynthétiques, les protéines qui absorbent la lumière pour la photosynthèse sont incluses dans des membranes cellulaires, ce qui représente l'arrangement le plus simple pour ces protéines. Cette membrane peut cependant être repliée en feuillets cylindriques appelés thylakoïdes ou en vésicules sphériques de membranes intracytoplasmiques. Ces structures peuvent remplir la majeure partie de l'intérieur d'une cellule, offrant ainsi une très grande surface membranaire pour permettre à la bactérie d'absorber davantage de lumière. Chez les plantes et les algues, la photosynthèse se déroule dans des organites appelés chloroplastes. Une cellule typique de plante contient environ dix à cent chloroplastes. Ces derniers sont enveloppés par une membrane interne et une membrane externe de nature phospholipidique et séparées par un espace intermembranaire. L'intérieur du chloroplaste est constitué d'un fluide aqueux appelé stroma. Dans le stroma se trouvent des thylakoïdes empilés en grana où siège la photosynthèse. Les thylakoïdes sont en forme de disques aplatis délimités par une membrane contenant l'espace thylakoïdes ou lumen. La photosynthèse se déroule précisément dans la membrane des thylakoïdes, qui contient des complexes protéiques membranaires intégraux et périphériques ainsi que les pigments qui absorbent l'énergie lumineuse et constituent les photosystèmes. Les plantes absorbent la lumière essentiellement grâce à des pigments appelés chlorophylles, ce qui explique leur couleur verte. Outre les chlorophylles, elles utilisent des carotènes et des xanthophylles17. Les algues utilisent également de la chlorophylle, mais avec divers autres pigments tels que la phycocyanine, les carotènes, et les xanthophylles chez les algues vertes, la phycoérythrine chez les algues rouges et la fucoxanthine chez les algues brunes et les diatomées, ce qui donne une grande variété de couleurs. Ces pigments sont rassemblés chez les plantes et les algues dans des structures appelées antennes collectrices au sein desquelles les pigments sont organisés pour optimiser leur coopération.

Bien que toutes les cellules de plantes vertes possèdent des chloroplastes, l'énergie lumineuse est absorbée essentiellement par les feuilles, hormis chez certaines espèces adaptées à un ensoleillement fort et à une forte aridité, telles que les euphorbes et les cactus chez lesquelles le principal organe photosynthétique est la tige. Les cellules des tissus intérieurs d'une feuille — le mésophylle — peut contenir entre 450 000 et 800 000 chloroplastes par millimètre carré. La surface de la feuille est recouverte d'une cuticule cireuse et imperméable qui protège la feuille de l'excès d'évaporation d'eau et réduit l'absorption de la lumière bleue et ultraviolette afin de limiter l'échauffement de la plante. L'épiderme transparent permet à la lumière de le traverser pour mieux atteindre le mésophylle, où se déroule l'essentiel de la photosynthèse.

 

 

 

Représentation d'un chloroplaste :
    (1)   
membrane externe ;
    (2)   espace intermembranaire ;
    (3)   
membrane interne ;
    (4)   
stroma ;
    (5)   
lumen du thylakoïde ;
    (6)   membrane du 
thylakoïde ;
    (7)   
granum (empilement de thylakoïdes) ;
    (8)   
thylakoïde ;
    (9)   
amidon ;
    (10) 
ribosome ;
    (11) 
ADN chloroplastique ;
    (12) 
plastoglobule (gouttelette lipidique).

 

LA PYRONOÏDES

Les algues sont des organismes confinés aux environnements aqueux, même dans leurs biotopes terrestres. Il s'ensuit une difficulté pour elles à se procurer des quantités suffisantes de dioxyde de carbone afin de réaliser une photosynthèse efficace. En effet, le CO2 diffuse 10 000 fois plus lentement dans l'eau que dans l'air, et le CO2 dissous s'équilibre avec le bicarbonate HCO3, ce qui en limite encore davantage les quantités disponibles pour la photosynthèse. Dans l'eau de mer, l'essentiel du CO2 dissous l'est sous forme de bicarbonate, ce qui permet aux molécules de Rubisco des algues marines de ne fonctionner qu'au quart de leur vitesse maximum.

De très nombreuses algues, ainsi que les plantes terrestre de l'embranchement des anthocérotes, disposent de sous-organites (microcompartiments) appelés pyrénoïdes présents dans leurs chloroplastes pour y concentrer le dioxyde de carbone autour de leur Rubisco18. Le contenu (matrice) de ces pyrénoïdes est essentiellement constitué de Rubisco19 et est souvent traversé par des thylakoïdes qui se prolongent dans le stroma du chloroplaste.

Les pyrénoïdes sont souvent entourés d'une gaine d'amidon, synthétisé à l'extérieur du chloroplaste20. Chez Chlamydomonas, un complexe à haut poids moléculaire de deux protéines (LCIB/LCIC) forme une couche concentrique supplémentaire autour du pyrénoïde, à l'extérieur de la gaine d'amidon, dont on suppose actuellement qu'elle agit comme une barrière confinement du CO2 autour du pyrénoïde.

Les pyrénoïdes sont des structures très plastiques dont l'apparence est fortement corrélée à l'activité de concentration du dioxyde de carbone : chez Chlamydomonas en environnement riche en CO2, les pyrénoïdes sont petits et leur matrice manque de structure .

 

(En) Représentation de la structure entourant le pyrénoïde de Chlamydomonas reinhardtii. [1] milieu extracellulaire ; [2] membrane plasmique ; [3] cytoplasme ; [4] chloroplaste ; [5] stroma ; [6] membrane du thylakoïde ; [7] lumen du thylakoïde ; [8] pyrénoïde.

 

La carboxysomes

Les cyanobactéries possèdent des organites particuliers appelés carboxysomes qui concentrent le CO2 autour de la Rubisco afin d'en accroître le rendement. L'anhydrase carbonique présente dans ces carboxysomes libère le CO2 stocké dans le cytosol sous forme d'ions bicarbonate HCO3 concentrés dans la cellules de cyanobactérie par un transport actif à travers la membrane plasmique, qu'ils ne peuvent franchir dans l'autre sens en raison de leur charge électrique. Ces ions sont eux-mêmes formés à l'extérieur de la cellule à partir du CO2 dissous sous l'action d'autres anhydrases carboniques situées dans le milieu extracellulaire. Une fois dans le cytosol, les ions HCO3 ne libèrent que très lentement du CO2 sans l'action d'anhydrases carboniques, et diffusent donc vers les carboxysomes, où ils sont traités par des anhydrases carboniques avant d'être fixés par des molécules de Rubisco.